III Semester M.Sc. Degree Examination, December 2014 (2010 - 11 Scheme) (NS)
 CHEMISTRY
 C-304 : Spectroscopy - II (Common to AC/IC/OC/PC)

Time: 3 Hours
Max. Marks : 80
Instruction: Answer question 1 and any five of the remaining.

1. Answer any ten of the following:
a) Write the structure of a compound with the following data,

Molecular formula: $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{UV} \lambda_{\text {max }}$: 214 nm (EtoH);
IR: 3012, 1839, 1601, 1040 and $922 \mathrm{~cm}^{-1}$.
b) Derive an expression for W_{C} in an ICR -MS instrument.
c) How are the toutomers of methyl acetoacetate distinguished by ${ }^{1} \mathrm{H}$ NMR ?
d) Indicate the number of signals appearing in the broad-band decoupled ${ }^{13} \mathrm{C}$ NMR spectra of A and B

e) The EI-MS of chlorobenzene gives base peak at 77 , whereas benzyl chloride gives at $\frac{\mathrm{m}}{\mathrm{e}}>91$. Why?
f) $\mathrm{C}_{6} \mathrm{H}_{8}$ may exist as two reactive intermediates: Cyclohexane and 1,2 - cyclohexadiene. Write the prominent Raman bands for the two structural isomers.
g) Draw a diagram to show the anisotropic effects in $\mathrm{C}_{6} \mathrm{H}_{6}$ while recording ${ }^{1} \mathrm{H}$ NMR.
h) Justify the use of derivatives of cinnamic acid for matrix preparations in MALDI ionizations.
i) Sketch the high resolution Pascal triangle for the coupling of protons in the isopropyl group.
j) Molecular formula : $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$ shows IR bands at $3097,2247,1579$ and $1401 \mathrm{~cm}^{-1}$. Deduce the structure of the compound and assign the values.
k) The mass spectrum of benzene shows peaks at $\frac{\mathrm{m}}{\mathrm{e}}, 78,77,51,33.8$ and 26 . Account for the fragmentation.
I) The protons attached to the nitrogen of profrionamide appear as a broad peak at $\delta 6.51$ in its ${ }^{1}$ HNMR. Why ?
2. a) Outline Scott's rules to predict the $\lambda_{\max }$ of aromatic carbonyl compounds.
b) Diamond, crystalline silicon and crystalline germanium show a strong line at 1332, 520 and $300 \mathrm{~cm}^{-1}$ respectively in their Roman spectra. Explain the positions of the lines with respect to each other based on mass effect.
c) Explain Nuclear Overhouser Effect (NOE) with suitable example.
$(4+4+4=12)$
3. a) i) Mention the criteria required for a ${ }^{1}$ HNMR spectrum to be classified as first order.
ii) Write and explain the first order splitting rules of ${ }^{1} \mathrm{H}$ NMR.
b) Sketch the Karplus curve and highlight its importance.
c) Deduce the structure of an organic compound from the following data and assign the values :

Mol. formula : $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
$\mathrm{UV} \lambda_{\text {max }} \quad: 218 \mathrm{~nm}(\epsilon=10,000)$
IR
: 3400-2800(m, br), 1719, 1641 and $1111 \mathrm{~cm}^{-1}$
${ }^{13}$ CNMR : $\delta \quad:$ 172.4, 147.6, 122.4 and 18.0
(6+3+3=12)
4. a) Discuss the factors effecting chemical shift in
i) ${ }^{1} \mathrm{H}$ NMR and
ii) ${ }^{13} \mathrm{C}$ NMR
b) Predict the positions of the signals and designate the spin systems for
i)

ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ and
iii)

c) Illustrate McLafferty + 1 rearrangement with suitable example.
5. a) Give an account of the instrumentation and working of a quadrupolar mass spectrometer.
b) A compound has molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{4}$. It exhibits a broad band between $3400-3100 \mathrm{~cm}^{-1}$ in its IR spectrum. The proton NMR showed two singlets at $\delta: 3.33$ and 3.29 with integral ratio $1: 2$ respectively. Deduce the structure of the compound.
c) How are lanthanide shift reagents useful in simplifying complex proton NMR spectra?
6. a) State and explain :
i) Stevenson - Audier rule
ii) Nitrogen rule
b) Discuss the following :
i) Fermi resonance
ii) Usefulness of deuterium exchange in NMR
iii) FAB method for production of ions.
7. a) Deduce the structure of an organic compound from the following data and assign the values.

Molecular formula : $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$
UV $\lambda_{\text {max }}$
IR
${ }^{1}$ HNMR : δ
: 10.51, (s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exchangeable) 8.04 (d/d, 1H),
7.59 to $7.38(\mathrm{~m}, 3 \mathrm{H})$,
7.34 to $7.18(\mathrm{~m}, 3 \mathrm{H})$ and
7.04 to $6.90(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ CNMR : $\delta \quad: 168.9,162.3,150.2,136.4,130.3,129.6,129.3$, 121.6, 119.4, 117.8 and 111.9.

MS $\frac{\mathrm{m}}{\mathrm{e}}$ (rel. abundance)214 (13), 122 (8), 121(100), 93(9), 65(13) and 39(8).
b) Write short notes on:
i) Gas - sampling techniques for recording IR spectra.
ii) SFORD.

