

III Semester M.Sc. Degree Examination, December 2014 (2010 – 11 Scheme) (NS) CHEMISTRY C – 304 : Spectroscopy – II (Common to AC/IC/OC/PC)

Time : 3 Hours

Ho

Instruction: Answer question 1 and any five of the remaining.

- 1. Answer **any ten** of the following :
 - a) Write the structure of a compound with the following data,

<u>Molecular formula</u>: C_4H_6 UV λ_{max} : 214 nm (EtoH); IR : 3012, 1839, 1601, 1040 and 922 cm⁻¹.

b) Derive an expression for W_C in an ICR – MS instrument.

OH

- c) How are the toutomers of methyl acetoacetate distinguished by ¹H NMR?
- d) Indicate the number of signals appearing in the broad-band decoupled ¹³C NMR spectra of A and B

- e) The EI MS of chlorobenzene gives base peak at 77, whereas benzyl chloride gives at $\frac{m}{e} > 91$. Why ?
- f) $C_6 H_8$ may exist as two reactive intermediates : Cyclohexane and 1, 2 cyclohexadiene. Write the prominent Raman bands for the two structural isomers.

Max. Marks : 80

PG – 132

(10×2=20)

PG – 132

- g) Draw a diagram to show the anisotropic effects in C₆H₆ while recording ¹H NMR.
- h) Justify the use of derivatives of cinnamic acid for matrix preparations in MALDI ionizations.
- i) Sketch the high resolution Pascal triangle for the coupling of protons in the isopropyl group.
- j) Molecular formula : C_8H_7N shows IR bands at 3097, 2247, 1579 and 1401 cm⁻¹. Deduce the structure of the compound and assign the values.
- k) The mass spectrum of benzene shows peaks at $\frac{m}{e}$, 78, 77, 51, 33.8 and 26. Account for the fragmentation.
- I) The protons attached to the nitrogen of profrionamide appear as a broad peak at δ 6.51 in its ¹HNMR. Why ?
- 2. a) Outline Scott's rules to predict the λ_{max} of aromatic carbonyl compounds.
 - b) Diamond, crystalline silicon and crystalline germanium show a strong line at 1332, 520 and 300 cm⁻¹ respectively in their Roman spectra. Explain the positions of the lines with respect to each other based on mass effect.
 - c) Explain Nuclear Overhouser Effect (NOE) with suitable example.

(4+4+4=12)

- 3. a) i) Mention the criteria required for a ¹HNMR spectrum to be classified as first order.
 - ii) Write and explain the first order splitting rules of ¹H NMR.
 - b) Sketch the Karplus curve and highlight its importance.
 - c) Deduce the structure of an organic compound from the following data and assign the values :

Mol. formula : $C_4H_6O_2$

UV λ _{max}	: 218 nm (∈ = 10,000)	
IR	: 3400 – 2800 (m, br), 1719, 1641 and 111	1 cm ⁻¹
¹³ CNMR : δ	: 172.4, 147.6, 122.4 and 18.0	(6+3+3=12)

- 4. a) Discuss the factors effecting chemical shift in
 - i) ¹H NMR and
 - ii) ¹³ C NMR
 - b) Predict the positions of the signals and designate the spin systems for
 - i) $Cl_2 CH CH H$
 - ii) $CH_3 CH_2 Br and$

- c) Illustrate McLafferty + 1 rearrangement with suitable example. (6+3+3=12)
- 5. a) Give an account of the instrumentation and working of a quadrupolar mass spectrometer.
 - b) A compound has molecular formula $C_5H_{12}O_4$. It exhibits a broad band between $3400 3100 \text{ cm}^{-1}$ in its IR spectrum. The proton NMR showed two singlets at δ : 3.33 and 3.29 with integral ratio 1 : 2 respectively. Deduce the structure of the compound.
 - c) How are lanthanide shift reagents useful in simplifying complex proton NMR spectra ? (5+4+3=12)
- 6. a) State and explain :
 - i) Stevenson Audier rule
 - ii) Nitrogen rule
 - b) Discuss the following :
 - i) Fermi resonance
 - ii) Usefulness of deuterium exchange in NMR
 - iii) FAB method for production of ions.

(3+9=12)

PG - 132

-4-

7. a) Deduce the structure of an organic compound from the following data and assign the values.

	Molecular formula : C ₁₃ H ₁₀ O ₃		
	$\text{UV} \; \lambda_{\text{max}}$:	276 nm
	IR	:	3192, 1682, 1595, 1487, 1406 and 1100 cm ⁻¹
	¹ HNMR : δ	:	10.51, (s, 1H, D ₂ O exchangeable) 8.04 (d/d, 1H),
			7.59 to 7.38 (m, 3 H),
			7.34 to 7.18 (m, 3 H) and
			7.04 to 6.90 (m, 2H)
	¹³ CNMR : δ	:	168.9, 162.3, 150.2, 136.4, 130.3, 129.6, 129.3, 121.6, 119.4, 117.8 and 111.9.
	MS $\frac{m}{e}$ (rel. abundance)		214 (13), 122 (8), 121 (100), 93 (9), 65 (13) and 39 (8).
b)	Write short notes on :		use for recording ID encetre
	ii) SFORD.	puq	(6+6=12)